

Protection and Coordination for Solar Sites on the Distribution Power System

Luke P. Booth Application Engineer – Protection Schweitzer Engineering Labs, Inc.

Overview

- The Impacts of DG on feeder protection and the need for communications assisted tripping schemes
- Direct Transfer Tripping (DTT) Communication Scheme
- Mirror Bits
- Direct Fiber Attributes

DG Impact on Distribution Feeders

- Unintentional islanding
- Increased fault duty
- Relay desensitization
- Nuisance tripping
- Automatic reclosing

Unintentional Islanding

- Occurs when portion of area EPS and DR become electrically isolated from rest of area EPS and DR continues to energize island
- Should be avoided for two major reasons
 - There is potential for negative effects on voltage, frequency, and power quality
 - Islanded generator complicates both automatic reclosing and manual switching

Increased Fault Duty

- Is caused by addition of generating sources and rotating machinery of considerable size
- Affects capability of equipment to carry and interrupt fault currents
- Requires both local and area EPS equipment ratings to be reevaluated

Relay Desensitization

- Available short-circuit current increases with addition of DR
- Short-circuit current splits between substation and DR
- Substation short-circuit contribution can be significantly reduced when compared with value before addition of DR

Relay Desensitization Fault Current Distribution Without DR

Relay Desensitization Fault Current Distribution With DR

Operation for Fault in Adjacent Zone

Automatic Reclosing

- DR should be disconnected before open interval expires
 - By interconnection protection (81U, 81O, 59, 27)
 - By DTT
- Minimum open or dead time to allow arc deionization and to avoid restrike is

$$t = \frac{kV}{34.5} + 10.5 \text{ cycles}$$

Automatic Reclosing Close Permissives

- Feeder and bus are in synchronism
- Utility bus is hot and line is dead

Nonconventional Power Sources Under Fault Conditions

Challenges of Nonconventional Power Sources

- Cannot be represented as voltage source behind an impedance
- Do not generate
 - Continuous fault current
 - Any fault current
- Do not generate zero- and negative-sequence currents during nonsymmetrical faults (Type 3, Type 4, and PV)

1.2 MW Inverter Faulted Phase Quantities

1.2 MW Inverter Faulted Sequence Current

Type 4 Wind Turbine (Inverter) BC Fault as seen from the DC Bus ("Behind Inverter")

Consequences of Nonconventional Power Source Behavior During Faults

- Traditional Overcurrent Elements may not operate
 - Fault currents typically reach 1.5 to 1.7 times the inverter's maximum load current at the moment the fault occurs (fault inception).
 - 1-4 ms after fault inception, the inverter will continue to provide fault current at approximately 120% of nominal load current

Consequences of Nonconventional Power Source Behavior During Faults

- Directional Elements no longer work as expected
 - The inverter produces no sequence currents.
 - The microprocessor relay does not have a polarizing quantity to accurately declare a fault direction.

Fault Behavior Summary by Source

Anti-Islanding Protection IEEE 1547 general requirements to be met at point of common coupling (PCC)

DR Response to Voltage Excursions

Changed in 1547a-2014

Voltage Range (% of base voltage)	Clearing Time (s)	Clearing Time: Adjustable Up To and Including (s)
V < 45	0.16	0.16
45 ≤ V < 60	1.00	11
$60 \le V < 88$	2.00	21
110 < V < 120	1.00	13
V ≥ 120	0.16	0.16

DR Response to Frequency Excursions

Changed in 1547a-2014

	Default Settings		Range of Adjustability	
Functio n	Frequency Range (Hz)	Clearing Time (s)	Frequency Range (Hz)	Clearing Time: Adjustable Up To and Including (s)
UF1	< 57	0.16	56-60	10
UF2	< 59.5	2	56-60	300
OF1	> 60.5	2	60-64	300
OF2	> 62	0.16	60-64	10

Islanding Detection Elements and Typical DR Source Clearing

SEL-751 Element	ANSI#	DR Source Clearing Time Assumes 3 cycle breaker
Under Voltage	27	0.16 – 2.0 seconds *
Under Frequency	81U	0.16 seconds *
Under Frequency Rate of change	81R	≈ 7 - 34 cycles Setting dependent
Under Frequency Fast rate of change	81RF	≈ 7 - 10 cycles Frequency rate of change dependent
3 Phase Voltage Vector Shift	78VS	≈ 4 cycles

* Reference IEEE 1547 – 2003[™]

Possible Solutions: Fast Rate of Change 81RF Element Vector Shift 78VS Element Negative Sequence Overvoltage (59Q)

Fast Rate of Change of Frequency

Definitions

- Change in Frequency (FREQ-FNOM)
 - Slip of the frequency
- Speed of the Change of Frequency (FREQ-FNOM)/s
 - Acceleration

In words, "Not only does the frequency have to change by a certain value but it also has to change at a certain rate."

Fast Rate of Change of Frequency Cont.

SEL-751 78VS Element Logic From IM

Simulation Results

Reference Vector data

Three phase vector shift seen at inception of fault and at EPS source clearing

Vector Shift 78VS Event Report

Advantages of the 78VS element

- Fastest Method of islanding detection
- Relies total on DR source voltage monitoring
- Includes under voltage supervision

Disadvantages of the 78VS element

- Requires 20% loading increase at islanding
- Requires system studies for secure settings
- Requires DR close circuit monitoring

Islanding Detection Elements and Typical DR Source Clearing

SEL-751 Element	ANSI#	DR Source Clearing Time Assumes 3 cycle breaker
Under Voltage	27	0.16 – 2.0 seconds *
Under Frequency	81U	0.16 seconds *
Under Frequency Rate of change	81R	≈ 7 - 34 cycles Setting dependent
Under Frequency Fast rate of change	81RF	≈ 7 - 10 cycles Frequency rate of change dependent
3 Phase Voltage Vector Shift	78VS	≈ 4 cycles

* Reference IEEE 1547 – 2003[™]

Faulted Phase and Sequence Voltages of the Inverter

Set a Unbalanced Voltage Element (Just like Weak Infeed Detection!)

- Assume maximum load conditions create a system unbalance 10%
- Assume a 5% safety margin
- The nominal system line-to-neutral system voltage in the previous example is 7.2 kV

59Q Pickup = 7.2 kV * (10% + 5%) 59Q Pickup = 1.08 kV

Evaluating Weak Infeed For the Inverter Fault

Communications Assisted Tripping

Why Are Pilot Protection Schemes Required?

- Safeguard system stability
 - Minimize fault-clearing times
 - Allow high-speed reclosing
- Reduce equipment damage
- Improve power quality reduce voltage sag duration
- Provide coordination long-line and short-line applications

Types of Directional Comparison Protection Schemes

- DTT
- POTT
- PUTT
- DCB
- DCUB

DTT Scheme

Applying MIRRORED BITS Technology and Serial Radios for DTT

Mirrored Bits Communications

Mirrored Bits Communications Transmit "Mirrored" to Receive

Understanding MIRRORED BITS Message

- Each message consists of 4 bytes
- Each byte contains 1 start bit, 6 TMBs, 1 parity bit, and 1 stop bit
- Each of the 8 TMBs is repeated three times within these 4 bytes
- Selected TMBs are inverted based on TX_ID setting to provide unique address used for loopback detection

MIRRORED BITS Performance Monitoring

- When Mirrored Bits channel is operating correctly, ROK bit is set to 1
- When channel is disturbed, ROK drops out

Understanding ROK and RBAD

How Does CBAD Bit Work? How Would I Use It?

- Problem channel is experiencing many short noise bursts (intermittent)
- Solution CBAD provides means to measure and report channel unavailability

MIRRORED BITS Communications

Relay Communications Media

Types of Digital Communications

- Direct fiber
- Multiplexed fiber optics
 - SONET
 - Ethernet
- Digital radio

Benefits of Fiber-Optic Cable

- High bandwidth
- Low attenuation
- Noise immunity
- Dielectric properties
- Lightweight
- Small size
- No arcs

Wavelength

- Wavelength is "color" of light in electromagnetic spectrum
- Attenuation of glass is reduced at higher wavelengths
- Standard wavelengths are 850, 1,300, and 1,550 nm

Now select the "pipe" to transmit the signal through

Fiber-Optic Cable Design

- Cladding bends light waves back toward fiber center and prevents leaking
- Core is glass medium through which light travels

Multimode Fiber

- Operates best at 850 and 1,300 nm
- Has core diameter of 50, 62.5, or 100 µm (large)
- Uses LED to transmit
- Disperses light waves into numerous paths as they travel through core
- Is good for short and medium distances (within building or campus)
- Has blue or orange jacket

Single-Mode Fiber

- Operates best at 1,300 and 1,550 nm
- Has core diameter of 8 to 10 µm (narrow)
- Uses laser diode to transmit
- Includes no distortion from overlapping light pulses
- Has higher bandwidth than multimode, up to 50 times more distance
- Has yellow jacket

Fiber-Optic Data Transmission

Link Loss Budget

Considerations When Choosing Wavelength and Fiber Type

- Distance to cover
- Necessary bandwidth
- Budget
 - Fiber itself
 - Transmission hardware
- Multiplexer involvement (IEEE C37.94)

Conclusions

- An Inverter cannot be represented as voltage source behind an impedance like traditional power sources
- Traditional Distribution Protection struggles to detect fault currents supplied by inverters because inverters do not generate high fault or sequence currents
- Voltage elements area possible alternative to over current elements (Vector shift is the fastest anti-islanding detection method).
- Communications-Assisted Tripping schemes are a simple and effect way to provide protection for a DG

The energy behind public power

www.electricities.com

FOLLOW US ON SOCIAL MEDIA:

@ncpublicpower

facebook.com/Electricities

@ElectriCitiesNC