CONNECTIONS
 \rightarrow S U M M I T \leftarrow

 What's In Your Piggy

 What's In Your Piggy Bank?

 Bank?}

Speaker:

Dawn Lund
Vice President
Utility Financial Solutions,
LLC dlund@ufsweb.com

Utility Financial Solutions,

LLC

- International consulting firm providing cost of service and financial plans and services to utilities across the country, Canada, Guam and the Caribbean
- Instructors for cost of service and financial planning for APPA, speakers for organizations across the country.
- Hometown Connections preferred vendor for COS and financial analysis

Objectives

- Importance of cash reserve policy
- Factors that influence a utility's need for cash reserves
- Calculation of a sample cash reserve policy
- Methodology for any sizt

Why Development of a Cash Reserve Policy is Important

NA CONNECTIONS SUMMIT

Reasons for Adequate Cash

Funds exist to:

- Pay expenses
- Fund system improvements help ensure reliability
- Normal capital improvements = approx depreciation expense
- Pay Debt Service
- Fund unanticipated cost contingencies
- Phase in large rate adjustment
- Keep utility healthy for future Mgmt.

Cash Reserve Policy

Helps to:

- Justify cash reserves to customers, councils and boards
- Provides detailed description of methodology
- Maintain adequate reserve levels with changes in management, Boards and Councils
- Encourage periodic reviews of cash levels o Rate and borrowing needs
- Reduce chance of unexpected transfer to City

Helps Identify Bonds Issuances

- If rates set appropriately and large capital cause cash to fall below minimum = bond

Policy to Help Determine Debt Issues

Fiscal Year	Projected Rate Adjustments	Projected Revenues	Projected Expenses	Adjusted Operating Income	Projected Cash Balances	Projected Bonds	Planned Capital Improvements	Debt Coverage Ratio
Year 1	0.00\%_-	3,483,540	3,160,347	637,041	2,157,223	-	911,700	2.54
Year 2	0.00\%	3,483,540	3,188,044	610,543	2,319,871	-	852,200	2.31
Year 3	2.50\%	3,570,029	3,249,867	636,409	2,423,487	-	967,700	2.39
Year 4	2.50\%	3,658,680	3,492,550	483,576	$(3,181,940)$	-	6,729,140	2.48
Year 5	2.50\%	3,749,547	3,542,730	525,463	$(2,383,351)$	-	350,000	2.53
Minimum Rec	ommeded Year 1			\$ 560,138	\$ 2,175,988			1.40
IMinimum Rec	ommeded Year 5			565,125	\$__2,595,035			1.40

A A CONNECTIONS SUMMIT

Recommended Rate Track with Bond Issue

Fiscal Year	Projected Rate Adjustments	Projected Revenues	Projected Expenses	Adjusted Operating Income	Projected Cash Balances	Projected Bonds	Planned Capital Improvements	Debt Coverage Ratio
Year 1	0.00\%_- ${ }^{\text {a }}$	3,483,540	3,160,347	637,041	2,157,223	-	911,700	2.54
Year 2	0.00\%	3,483,540	3,188,044	610,543	2,319,871	-	852,200	2.31
Year 3	2.50\%	3,570,029	3,249,867	636,409	2,423,487	-	967,700	2.39
Year 4	2.50\%	3,658,680	3,492,550	483,576	2,031,935	5,300,000	6,729,140	2.19
Year 5	2.50\%	3,749,547	3,541,972	526,221	2,574,287		325,000	1.75
Minimum Recommeded Year 1 Minimum Recommeded Year 5				\$ 560,138	\$ 2,175,988			1.40
				\$_ 565,125	\$__2,595,035			1.40

A

Cash Reserve Policies and Bond Rating

- Establishing a formal policy important factor for bond rating o 200+ days for higher rating
- A cash reserve policy in isolation will not necessary improve bond ratings
- Many other key indicators

AOM CONNECTIONS SUMMIT

Bond Rating Agencies

- Why ratings are important
- Higher rating, considered Iow
- Better interest rate on debt
- Confidence doing things right

- Pride

Cash Reserve Policy

Policy should identify minimum cash reserve level

- Cash should be allowed to flow above the minimum level
- Cash reserves will fluctuate over time, usually depending on age of assets and capital improvement program

Some Utilities Identify Maximum Levels of Reserves

- Some Utilities will specify a maximum cash reserve
- Due to external pressures a maximum may be considered by the utility
- We don't recommend a maximum
o Are you reinvesting enough in the system?
o Move to restricted for "future XX"

Types of Cash Reserve Policies

Most Common Policy Number of Days of Expenses

$$
-90-180 \text { days O\&M }
$$

-45 days operating expenses plus single proxy emergency event
-50% of capital expenditures

Factors that Influence Cash Reserves

- Timing differences between when expenses are incurred and revenues received from customers
- Future capital improvement program
- Annual debt service payments
- Historical Asset Investment
- Ice Storm
- Wind Storm

Operating Factors that Influence Cash Reserves

- Utilities control over rates
- Rates ability to recover fixed operating costs
- Customer Charge
- Demand Charges
- Structure of Rates
- Cash Cycles (peaks and valleys in Expenses or Seasonal billing)
- Other unique to your utility

Identification of Minimum Cash Reserves Case Example

NA CONNECTIONS SUMMIT

Determination of Minimum Cash At Least Five Factors to Consider

Five Risk Factors to Consider	\% Risk Range to Allocate	Influenced By:
O\&M Expenses (Less Power Costs and Depreciation)	12-25\%	\|Billing Cycle - timing of expenses VS Receipts
Power Costs	10-25\%	Max Month converted to working capital days
Historical Investment in Assets	1-3\%	IAge of System, Likelihood of ice, wind, other
Annual Debt Payment	50-100\%	\|Timing of Debt Payments
Total Five-Year Capital Plan	20\%	$1 / 5$ of five-year plan - funds beginning of season
Total of These Five Items		\$X,XXX,XXX MINIMUM Recommendation

Operation and Maintenance Expenses

- Range $12-25 \%$ (45 to 90 days) of yearly O\&M
- Working Capital Lag -
oTiming differences exist between when expenses are incurred and revenues received
- Average Municipal 45 days or 12.3\% (45/365days)
- 15 days avg month, 5 days read/bill, 20 days due, 5 days for

Working Capital O\&M

Annual O\&M (Excluding Power Supply \& Depr)	$\$$	$24,000,000$
Factor (45 days/365days = 12.3\%)		$\underline{12.3 \%}$
Working Capital	$\$$	$2,958,904$
$\mathbf{1 2 . 3 \%}$ Factor = 45 Days Divided by 365 Days		

O\&M Line Item

Five Risk Factors to Consider	\% Risk Range to Allocate	Influenced By:
O\&M Expenses (Less Power Costs and Depreciation),	12.30\%	\$2,958,904
Power Costs	10-25\%	Max Month converted to working capital days
Historical Investment in Assets	1-3\%	IAge of System, Likelihood of ice, wind, other
Annual Debt Payment	50-100\%	ITiming of Debt Payments
Total Five-Year Capital Plan	20\%	$1 / 5$ of five-year plan - funds beginning of season
Total of These Five Items		\$X,XXX,XXX MINIMUM Recommendation

Power Costs

- Review peak monthly power supply costs
- Adjust for working capital lag time

Power Costs

- Review peak monthly power supply costs

Month	Power Supply Expense
January	2,340,695
February	2,319,399
March	2,416,769
April	2,436,267
May	3,564,256
June	3,696,283
July	3,783,388
August	3,751,459
September	3,533,570
October	3,039,720
November	2,588,718
December	2,885,649
Total Power Supply Expense	36,356,174

Working Capital Power Costs

Max Monthly Power Expense	$\$$
Factor to convert 30 days into 45 days	383,388
Total Working Capital Power Supply 45 days	$\mathbf{\$}$
Total Yearly Power Costs	$\mathbf{5 , 6 7 5 , 0 8 2}$
Percent of Total Yearly Power Costs	$\mathbf{\$}$
	$36,356,174$

Power Costs Line Item

Five Risk Factors to Consider	\% Risk Range to Allocate		Influenced By:
O\&M Expenses (Less Power Costs and Depreciation)I	12.30\%	1	\$2,958,904
Power Costs	15.60\%	F	5,675,082
Historical Investment in Assets	1-3\%	IAge of System,	Likelihood of ice, wind, other
Annual Debt Payment	50-100\%	Timing of Debt P	Payments
Total Five-Year Capital Plan	20\%	$1 / 5$ of five-year	plan - funds beginning of season
Total of These Five Items		\$X,XXX,XXX	MINIMUM Recommendation

Historical Investment in system

- Capital lag used to factor in risk of catastrophic event -Consider Age of Assets
-Accumulated depreciation expense divided by asset investment
- Assumptions for Base Case:
-If less than 50\% = 1\%
-Between 50\%-60\% = 2\%
-Over 60\% = 3\%

Historical Investment

	Amount
Total Historical Investment	$165,585,000$
Accumulated Depreciation	$87,101,683$
Percent of Total	52.6%
Factor	$\mathbf{2 . 0 \%}$
Cash Reserve	$\mathbf{3 , 3 1 1 , 7 0 0}$

Historical Investment Line Item

Five Risk Factors to Consider	\% Risk Range to Allocate		Influenced By:
O\&M Expenses (Less Power Costs and Depreciation)	12.3\%	I	\$2,958,904
Power Costs	15.6\%	F	5,675,082
Historical Investment in Assets	2.0\%		3,311,700
Annual Debt Payment	50-100\%	Timing of Debt Payments	
Total Five-Year Capital Plan	20\%	$1 / 5$ of five-year plan - funds beginning of season	
Total of These Five Items		\$ $\mathbf{X , X X X , X X X}$	MINIMUM Recommendation

Debt Service

- Debt Service payments are often made twice per year
- Cash reserve policy attempts to make sure payment is available in reserves when needed
- Often uses peak payment

Debt Service Working Capital

Date				rest		tal
October	\$	-	\$	123,313	\$	123,313
April		382,566		123,313	-	505,879
Total	\$	382,566	\$	246,626	\$	629,192
Highest Payment divided by Annual Debt Service					80.4\%	

Debt Service Line Item

Five Risk Factors to Consider	\% Risk Range to Allocate	Influenced By:
O\&M Expenses (Less Power Costs and Depreciation)	12.3\%	I \$2,958,904
Power Costs	15.6\%	F 5,675,082
Historical Investment in Assets	2.0\%	3,311,700
Annual Debt Payment	80.4\%	I 505,879
Total Five-Year Capital Plan	20\%	$1 / 5$ of five-year plan - funds beginning of season
Total of These Five Items		\$X,XXX,XXX MINIMUM Recommendation

Capital Improvements

- Cash available in reserves to fund capital expenses at beginning of construction season
- Capital expenditures can fluctuate annuall smooth fluctuations by use of a five-year average
- Subtract planned bond issuances from five year plan

Capital Improvements

	Year 1	Year 2	Year 3	Year 4	Year 5		Total
Capital Expenditure	2,000,000	2,500,000	4,000,000	3,500,000	3,000,000		15,000,000
Bond Proceeds							6,000,000
Five-year total						\$	9,000,000
Cash Policy Amount							20\%
Cash Reserves						\$	1,800,000

Minimum Reserve Policy

Five Risk Factors to Consider	\% Risk Range to Allocate	MINIMUM Reserves

Reserve Policy as a Whole

- Not establishing an amount - establishing methodology
o Formula updated each year with budget process
- Minimum cash in total not each line item
- Check for reasonableness
- Change risk percent to line up with goals

Simplification of Policy

- Once the methodology is established, can simplify policy for number of days of O\&M

Policy Simplification		
Annual Expense	$\$$	$24,000,000$
Power Supply		$36,356,174$
Total Expenses	$\mathbf{\$}$	$\mathbf{6 0 , 3 5 6 , 1 7 4}$
Minimum Cash Reserve	$\$$	$14,251,556$
Factor (\$60,356,174/\$14,251,556)		4.23
Days Cash on Hand (365/4.23)		$\mathbf{8 6 . 0}$

Modify Percentages?

Five Risk Factors to Consider	\% Risk Range to Allocate	MINIMUM Reserves
O\&M Expenses (Less Power Costs and Depreciation)!	12.3\%	\$2,958,904
Power Costs	15.6\%	5,675,082
Historical Investment in Assets	2.0\%	3,311,700
Annual Debt Payment	80.4\%	505,879
Total Five-Year Capital Plan	20.0\%	1,800,000
Total of These Five Items		\$14,251,565

Calculate Days Cash on Hand

Comments:

Find this information on your balance sheet and Income statement
Establish a Cash reserve policy for each utility
Typical Range 90-120 days of O\&M
High Bond Rating 150 Days

Real Example

A

Real Example

Fiscal Year	Projected Rate Adjustments	Projected Cash Balances
Year 1	0.00\%	305,841
Year 2	0.00\%	$(224,816)$
Year 3	0.00\%	$(964,623)$
Year 4	0.00\%	$(1,891,495)$
Year 5	0.00\%	$(3,074,774)$
Recommended Target		\$ 1,926,681

Fiscal Year	Projected Rate Adjustments	Projected Cash Balances	Year Four Current Update
Year 1	15.00\%	699,284	
Year 2	15.00\%	1,017,092	
Year 3	5.50\%	1,322,064	
Year 4	5.50\%	1,648,056	\$ 1,521,188
Year 5	5.50\%	1,938,152	
Recommended Target		\$ 1,926,681	

Formal Policy Development Just Calculating Doesn't Make it a Solid Guideline

Development of Policy

- Helps ensure cash objections kept intact - change in management/Board
- List methodology and show calculations in policy for future consistency
- Identify time period to restore cash reserve if falls below minimum cash levels -Example three to five year to restore cash levels
-Cash restored through issuance of debt, rate adjustments, reduced expenses

Implementation

- Explain the need for maintaining appropriate levels of cash reserves
- Explain assumptions to Governing Body
- Request input on assumptions
- Develop into policy format and get formal approval

Questions?

A

ELECTRICITIES

of NORTH CAROLINA, INC.
The energy behind public power
www.electricities.com

FOLLOW US ON SOCIAL MEDIA:

(0) @ElectriCitiesNC
f @ElectriCitiesNC
(5) @ElectriCitiesNC
(in)/company/ElectriCitiesNC

