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Outline

• Advanced Data Analytics

– Sponsored by ElectriCities and collaborated with New River, Wilson Power, 

Fayetteville PWC

– Characteristics of utility data sets

• Use Cases

– Use Case 1: Mislabeled meter phase

– Use Case 2: Mislabeled transformer-Meter pairing

– Use Case 3: Load disaggregation

– Use Case 4: Impact of PV and EV integration

– Use Case 5: Baseline estimation
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Utility Data Used in Our Study

• Smart Meter Data

– Real and reactive power or power 

factors

– Voltage

• SCADA Data

– Feeder level data (Voltage, Current, 

Real and Reactive Power)

– Demand Response and CVR events

• Customer Information System Data

– Network connections (i.e., meter-
transformer-substation connections)

– Load types
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Utility Distribution Network

Substation

GIS map: overlaid with 
Google map showing meter 
to transformer connectionsFeeder models: showing only 

distribution transformer locations

Feeder 1



Main Data Analytic Applications

• Use Case 1: Mislabeled meter phase

• Use Case 2: Mislabeled transformer-Meter pairing

• Causes

– Erroneous entries

– Feeder reconfiguration 

– Transformers and meters can be moved to another 

location

– Labor intensive to maintain the information up-to-date

• Use Case 3: Load disaggregation

• Use Case 4: EV and PV Integration Analysis

• Use Case 4: Baseline estimation

• Needs

– Identify high-quality demand response resources

– Understand DER impacts on load curves

– Quantify load reductions by CVR and DR
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Utility Distribution Network

Feeder 1

Substation

1. Which phase 
the meter is on?

2. Which transformer 
served the load?

3. Identify the 
amount of HVAC, 
water heater, EV 
charging loads.

T1

T2



Use Case 1: Meter Phase Identification

Study conducted by: Hanpyo Lee (hlee39@ncsu.edu)
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Industrial Advisors:  

ElectriCities: PJ Rehm

New River Light and Power: Matthew Makdad, 
Edmond Miller



Problem Description 

• Needs

– Input errors are inevitable

– Approximately 6% mislabeled meters 

– Manual checking is labor intensive 

– Need to automate the process

• Approach: basically a classification problem

– Group meters together by the similarity of their 

voltage profiles 

• Two Scenarios

– Known meter-phase-label: 

• Label is right or wrong?

– Unknown meter-phase-label

• Which phase is the meter connected to?
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Utility Distribution Network

Feeder 1

Substation

phase 𝑎

phase b



Why comparing voltage profiles?

• Meters on the same phase and close to each other tend to see similar 

voltage profiles. The similarity can be estimated by correlations.
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Voltage profiles are similar as they go up and 

down almost in sync with each other

Voltage profiles differ from each other 

and out of sync

For three meters supplied by different 
transformers and on different phases

For five meters supplied by the same 
transformer on phase c



Correlation Deterioration Phenomenon

• Impact of circuit topology

– Meters in series tend to have stronger 

correlation

– Meters in parallel tend to have weaker 

correlations 

• Causes

– In a parallel circuit, voltage change at the 

end can change in differently ways

– Especially when one user has high 

consumption and the other has low 

consumption
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Select Low Consumption Periods
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When the consumption is low, say P<0.5 kW, 
meter side voltages are very close to the 
transformer voltage as the secondary circuit 
voltage drop is negligible. 

𝑽𝑿𝒎𝒆𝒓
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Performance Improvements
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Use voltage segments from low-power periodsUsing all voltage data

The figure shows the correlation of meters with each other
The right correlation map shows much clear boundary between meter groups
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Input Data and Parameter Settings

• Testing on 1 synthetic and 13 real feeders

• Real data: 3 groups (small, medium, and large)

• Parameters: 𝑃𝑡ℎ, 𝑇𝑑𝑢𝑟, and number of clusters
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Data 

type
Group

Feeder

No.

Optimal parameter values

𝑷𝒕𝒉 [kw]

[0.5 2.0]

𝑻𝒅𝒖𝒓 [h]

[1.0 3.0]

𝟑×𝒏
[3 36]

Synthetic [0.8 1.2] 1.0, 1.5 12

Real

Small 1, 3, 11 [0.8 1.2] 1.0, 1.5 6

Medium 8, 10, 12, 13 [1.3 1.7] 2.5, 3.0 18

Large 2, 4, 5, 6, 7, 9 [1.3 1.7] 1.0, 1.5 36

Han Pyo Lee, Mingzhi Zhang, Mesut Baran, PJ Rehm, Edmond Miller, Matthew Makdad, and Ning Lu, "A Novel Data Segmentation Method for Data-driven Phase Identification,” 
22PESGM0071, Proc. of 2022 PES General Meeting. Available online at: http://arxiv.org/abs/2111.10500.

http://arxiv.org/abs/2111.10500


Results of Known Meter-Phase-Labels
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[3] Blakely, Logan, Matthew J. Reno, and Wu-chi Feng. "Spectral clustering for customer phase identif ication using AMI voltage timeseries." 2019 IEEE Power and Energy Conference at

Illinois (PECI). IEEE, 2019.

F e eder 

N o .

Phases in the util ity records Phases predicted by the a lgorithm
De tected as 

co rrect (N_C1)

De tected as 

inco rrect

( N_RT-N_C1)

Va lidated 1

( N _V1)

Accuracy1 

( ( N_C1+N_V1)/N_RT)

De tected as 

co rrect (N_C2)

De tected as 

inco rrect

( N_RT-N_C2)

Va lidated 2

( N _V2)

Accuracy2 

( ( N_C2+N_V2)/N_RT)A B C A+B+C ( N_RT) A B C A+B+C ( N_PT)

Pro p osed

Synthetic 436 293 371 1,100 436 293 371 1,100 1,100 - - 100.0% 1,100 - - 100.0%

1 7 24 2 33 5 25 3 33 31 2 - 93.9% 31 2 - 93.9%

2 146 159 145 450 139 152 159 450 415 35 35 100.0% 447 3 - 99.3%

3 11 26 36 73 11 26 36 73 73 - - 100.0% 73 - - 100.0%

4 147 91 178 416 144 94 178 416 399 17 10 98.3% 411 5 - 98.8%

5 192 214 231 637 210 218 209 637 605 32 24 98.7% 629 8 - 98.7%

6 344 249 306 899 363 262 274 899 803 96 80 98.2% 898 1 - 99.9%

7 113 102 109 324 115 104 105 324 313 11 5 98.1% 318 6 - 98.1%

8 51 51 71 173 49 53 71 173 169 4 2 98.8% 171 2 - 98.8%

9 62 193 301 556 57 194 305 556 505 51 35 97.1% 543 13 97.7%

10 22 42 67 131 22 42 67 131 131 - - 100.0% 131 - - 100.0%

11 3 10 11 24 3 10 11 24 24 - - 100.0% 24 - - 100.0%

12 39 37 32 108 39 37 32 108 108 - - 100.0% 108 - - 100.0%

13 55 56 26 137 55 56 26 137 137 - - 100.0% 137 - - 100.0%

To tal 1,192 1,254 1,515 3,961 1,212 1,273 1,476 3,961 3,713 248 191 98.6% 3,921 40 - 99.0%

SC [ 3]

Synthetic 436 293 371 1,100 424 276 400 1,100 1,063 37 - 96.6% 1,063 37 - 96.6%

1 7 24 2 33 9 24 - 33 29 4 1 90.9% 30 3 - 90.9%

2 146 159 145 450 158 155 137 450 435 15 8 98.4% 441 9 - 98.0%

3 11 26 36 73 11 24 38 73 70 3 - 95.9% 70 3 - 95.9%

4 147 91 178 416 164 80 172 416 397 19 12 98.3% 408 8 - 98.1%

5 192 214 231 637 204 221 212 637 606 31 16 97.6% 619 18 - 97.2%

6 344 249 306 899 347 250 302 899 831 68 60 99.1% 893 6 1 99.4%

7 113 102 109 324 115 103 106 324 312 12 5 97.8% 318 6 - 98.1%

8 51 51 71 173 49 50 74 173 167 6 - 96.5% 167 6 - 96.5%

9 62 193 301 556 50 183 323 556 527 29 14 97.3% 532 24 2 96.0%

10 22 42 67 131 21 42 68 131 130 1 - 99.2% 130 1 - 99.2%

11 3 10 11 24 4 10 10 24 23 1 - 95.8% 23 1 - 95.8%

12 39 37 32 108 39 37 32 108 108 - - 100.0% 108 - - 100.0%

13 55 56 26 137 55 56 26 137 135 2 - 98.5% 135 2 - 98.5%

To tal 1,192 1,254 1,515 3,961 1,226 1,235 1,500 3,961 3,770 191 116 98.1% 3,874 87 3 97.9%



F e eder 

N o .

Pha ses in the util ity records Phases predicted by the a lgorithm
De tected as 

co r rect (N_C1)

De tected as 

inco rrect

( N _RT-N_C1)

Va lidated 1

( N _V1)

Accu racy1 

( ( N_C1+N_V1)/N_RT)

De tected as 

co r rect (N_C2)

De tected as 

inco rrect

( N _RT-N_C2)

Va lidated 2

( N _V2)

Accu racy2 

( ( N_C2+N_V2)/N_RT)A B C A+B+C ( N_RT) A B C A+B+C ( N_PT)

Pro posed

Synthetic 436 293 371 1,100 436 293 371 1,100 1,100 - - 100.0% 1,100 - - 100.0%

1 7 24 2 33 7 25 1 33 31 2 - 93.9% 31 2 - 93.9%

2 146 159 145 450 133 153 164 450 412 38 37 99.8% 444 6 4 99.6%

3 11 26 36 73 11 26 36 73 73 - - 100.0% 73 - - 100.0%

4 147 91 178 416 152 90 174 416 407 9 6 99.3% 402 14 4 97.6%

5 192 214 231 637 213 218 206 637 606 31 25 99.1% 630 7 - 98.9%

6 344 249 306 899 330 253 316 899 796 103 103 100.0% 898 1 - 99.9%

7 113 102 109 324 114 104 106 324 314 10 4 98.1% 315 9 1 97.5%

8 51 51 71 173 49 54 70 173 170 3 - 98.3% 170 3 - 98.3%

9 62 193 301 556 36 174 346 556 505 51 40 98.0% 548 8 - 98.6%

10 22 42 67 131 22 42 67 131 131 - - 100.0% 131 - - 100.0%

11 3 10 11 24 3 10 11 24 24 - - 100.0% 24 - - 100.0%

12 39 37 32 108 39 37 32 108 108 - - 100.0% 108 - - 100.0%

13 55 56 26 137 55 56 26 137 137 - - 100.0% 137 - - 100.0%

To tal 1,192 1,254 1,515 3,961 1,164 1,242 1,555 3,961 3,714 247 215 99.2% 3,911 50 9 99.0%

CAM-E C [4]

Synthetic 436 293 371 1,100 406 276 418 1,100 1,053 47 0 95.7% 1,053 47 - 95.7%

1 7 24 2 33 6 24 3 33 27 6 1 84.8% 28 5 - 84.8%

2 146 159 145 450 155 159 136 450 435 15 8 98.4% 441 9 - 98.0%

3 11 26 36 73 18 20 35 73 65 8 - 89.0% 65 8 - 89.0%

4 147 91 178 416 165 77 174 416 394 22 12 97.6% 400 16 - 96.2%

5 192 214 231 637 205 218 214 637 606 31 16 97.6% 619 18 - 97.2%

6 344 249 306 899 322 248 329 899 803 96 88 99.1% 895 4 - 99.6%

7 113 102 109 324 115 104 105 324 313 11 5 98.1% 318 6 - 98.1%

8 51 51 71 173 49 46 78 173 165 8 - 95.4% 165 8 - 95.4%

9 62 193 301 556 58 182 316 556 526 30 16 97.5% 521 35 - 93.7%

10 22 42 67 131 21 42 68 131 130 1 - 99.2% 130 1 - 99.2%

11 3 10 11 24 4 10 10 24 23 1 - 95.8% 23 1 - 95.8%

12 39 37 32 108 37 39 32 108 106 2 - 98.1% 106 2 - 98.1%

13 55 56 26 137 55 56 26 137 135 2 - 98.5% 135 2 - 98.5%

To tal 1,192 1,254 1,515 3,961 1,210 1,225 1,526 3,961 3,728 233 146 97.8% 3,846 115 - 97.1%

Results of Unknown Meter-Phase-Labels

13NC State University

[4] Blakely, Logan, and Matthew J. Reno. "Phase identif ication using co‐association matrix ensemble clustering." IET Smart Grid 3.4 (2020):



Summary

• Data segmentation methods can significantly improve the accuracy of 

correlation-based identification algorithms

• For meter phase identification algorithms, the proposed algorithm 
outperforms the state-of-art methods in both accuracy and robustness

– Known meter-phase-label: 99.0%

– Unknown meter-phase-label:  99.0%

• Advantages of using machine-learning based approach

– Automated the previously manual process

– Make it a cheaper approach with higher efficiency and accuracy

– Can be run periodically to identify changes

– This will stream-line the maintenance of an accurate customer information 

system

NC State University 14

Scan to 

access paper 



Use Case 2: Meter –Transformer Pairing 
Identification

Study conducted by: Hanpyo Lee (hlee39@ncsu.edu)
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Industrial Advisors:  

ElectriCities: PJ Rehm

New River Light and Power: Matthew Makdad, 
Edmond Miller



Use Case 3: Load Disaggregation

Studies conducted by PhD students:
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Industrial Advisors:  

ElectriCities: PJ Rehm

New River Light and Power: 
Matthew Makdad, Edmond Miller

Fayetteville PWC: Timothy 
Stankiewicz

Kai Ye Hyeonjin Kim



Home

Building

Feeder

Substation

Motivation

17
K. Ye, H. Kim, Y. Hu, N. Lu, D. Wu, PJ Rehm, " A Modified Sequence-to-point HVAC Load Disaggregation Algorithm",
2023 IEEE PES General Meeting. Available online at: http://arxiv.org/abs/2212.04886

• Automated processing of smart meter data

• Identify behind-the-meter Distributed Energy Resources

• HVAC disaggregation

• DR resource identification

• Individual household → Different aggregation levels

• Residential → Different user types

Water Heater HVAC



Motivation

• Data sources: 

– smart meter data

– Sub-meter data

– Weather data

• Identify behind-the-meter resources

– Water heater

– HVAC

– EV

– PV

• Demand response quantification

– Individual loads (residential, commercial, 
industrial)

– Transformer and feeder loads

3/16/2023 Dr. Ning Lu             North Carolina State University 18

Commercial
building

Residential 
home

feederIndustrial
loads



Data Set Overview

19

• Pecan Street Data: 1-min smart meter data of 1070 users with sub-metering

– Down-sampled to 15-min

– 90 days in summer of 2015

– 230 customers

• 200 in Austin, TX

• 20 in Boulder, CO

• 10 in San Diego, CA

San Diego

Boulder

Austin



Method 1: Sequence-to-Point CNN

• CNN stands for Convolution Neural Network.  It is a machine-learning based method.

• Input: K data points before and after time t from the power profile and the corresponding 

temperature profile

• Output: The HVAC load at time t

20



Algorithm Overview

• Data augmentation

• Training and testing the model on one location

• Transfer learning (port the pre-trained model to other locations) with fine-tuning

21

Model Training: 
Sufficient data

Fine-tuning and Testing: Limited data

Application:
No sub-metered 
data

10

20

200



Method 2: Mutual Information Estimation 

• Relationship between outdoor temperature and HVAC load are clear in aggregated case

• HVAC load can be modeled with temperature parameterized by 1) Rating (k), 2) Convexity (a)

• One customer case • 100 Aggregated customer case



Algorithm Overview

Input data: 15-min granularity of smart meter data (target day, 

mild days, temperature)

Step 1: Mutual information based estimation 

Find the best linear form that maps temperature to AC usage

Step 2: Optimization-base post-adjustment

(Input: Step 1 outputs, mild days load)



Performance Evaluation Metrics

• Performance evaluation:
– nMAE (normalized Mean absolute error): Point-to-point difference measurement

– nEE (normalized Energy error): Energy amount difference measurement 

24

Mean Absolute Error

Energy Error



Simulation Results
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Simulation Results

26

• The algorithm has similar satisfactory results on different aggregation levels at all locations.

10-user 50-user 500-user



At Different Aggregation Level
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• Fine-tuning has been proved to be effective at different aggregation level..



Simulation Results on Wilson Data
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• The algorithm has been tested on residential and commercial users in Wilson, NC.

• The algorithm achieves reasonable results without sub-metered data.



Application and Future Work 

29

Application:
No sub-metered data

• Automated processing of smart meter 

data

• DR resource identification

• Cold load pickup impact analysis

• Next step: Port the model to 

disaggregate other behind-the-meter 

DERs for energy management study



Demo of the Load Disaggregation Results
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Use Case 4: Impact of PV and EV Integration on Load 
Shapes (Gismo EV Charger study)

Studies conducted by PhD students:

NC State University 31

Industrial Advisors:  

Gismopower: Achim Ginsberg-Klemmt

ElectriCities: PJ Rehm

New River Light and Power: Matthew 
Makdad, Edmond Miller

Fayetteville PWC: Timothy Stankiewicz

Kai Ye Hyeonjin Kim



System Overview

32

SolarEdge EV Charging Single 
Phase Inverter  7.6kW

9 PV panels with 0 tilt 
angle 4.14kW peak

Level 2 EV Charger
Rated AC Output (Grid & PV) 9.6kW

DC AC

Grid

AC

DC

3/16/2023 Kai  Ye & Hyeonjin Kim, North Carolina State University

A solar panel powered charger



PV-powered Charger 
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9kW

0

3kW

6kW



PV and EV integration studies

34

1. Base Case: Smart meter data (No EV, No PV)
2. Add PV and EV charging curves onto the base case
3. Study impacts of EV charging on transformer loading 

Load profiles w/o PV & EV Normalized PV profiles (Modified) EV profiles

Augmented profiles for 
impact analysis

3/16/2023 Kai  Ye & Hyeonjin Kim, North Carolina State University



MEGA Impact Analysis and Design Review

Data Description

35 / 16

Hyeonjin Kim, Kai Ye  Oct 17, 2022 

▪ Daily Charging Energy (we have obtained sub-metered data from Pecan Street)

▪ EV leaving / Arrival time (using the NHTS Data)

▪ EV types (using the 2022 EV market Share)



Rescheduled to 
22:30 - 2:30

Scheduled EV Charging

36

Rescheduled to 
10:00 – 14:00

No EV 
control

3/16/2023 Kai  Ye & Hyeonjin Kim, North Carolina State University



Aggregated Impact of 1000 Users

373/16/2023 Kai Ye & Hyeonjin Kim, North Carolina State University

Set-up
Base No PV or EV

1A Base + EV

1B Base + PV

2
Base + PV + EV 

No Control

3
Base + PV + 

day time 
charging

4
Base + PV + 
night time 
Charging

Daily Peak hour

Daily Valley hour

EV

PV EV

PV
Peak 
hour 
shifted

base

Peak load

Valley load

Daily Energy

Daily Solar 
Consumption



An Apartment Complex in New River
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▪ 44 Customers

▪ 10 EVs 

▪ PV Capacity: 41.4 [kW]

No-EV

10-EV

No-EV

10-EV

2019 2020

Daily Peak Load Daily Valley Load

PV PV



Normal Load Growth: 2019 → 2021
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Figure produced by Hanpyo lee using Fayetteville data

Load duration curves 2019
Load duration curves 2021

Feeder1
feeder2
feeder3

Feeder1
feeder2
feeder3



Expected Changes: 2021→2030?
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Can we guess what 
the load duration 
curves in 2030 will 
look like?

0 

New Electrification 
Loads (e.g., EVs and 
electric water heaters)

Roof-top PV

Project Fayetteville 
data into the future?

Feeder1
feeder2
feeder3



Expected Changes: 2021→2030?
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Then, what the load 
profile in 2030 will 
look like?

0 

New Electrification 
Loads (e.g., EVs and 
electric water heaters)

Roof-top PV

with EV

Base 
case

with PV

Feeder1
feeder2
feeder3



Use Case 5: Baseline Identification

Study conducted by: Hanpyo Lee (hlee39@ncsu.edu)
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Industrial Advisors:  

ElectriCities: PJ Rehm

New River Light and Power: Matthew Makdad, 
Edmond Miller

Fayetteville PWC: Timothy Stankiewicz



Baseline Identification

• Conservation Voltage Reduction (CVR)

– Peak demand reduction and energy savings

– Easiest DR option in a grid with high penetration of IBRs

H.P. Lee, L. Song, Y. Li, N. Lu, D. Wu, PJ Rehm, M. Makdad, E. Miller, "An Iterative Bidirectional Gradient Boosting
Algorithm for CVR Baseline Estimation", Available online at: http://arxiv.org/abs/2211.03733

• Baseline (PBL)

• Load profile during the CVR event if the 

voltage is not reduced

• DR Baseline Identification

• Quantifying the DR effect

• Crucial for executing DR in MG 

operation

http://arxiv.org/abs/2211.03733


Flowchart

Stage 1) Similar day selection 

algorithm

Stage 2) Iterative bi-directional 

GB-based algorithm with 

reconciliation

H.P. Lee, L. Song, Y. Li, N. Lu, D. Wu, PJ Rehm, M. Makdad, E. Miller, "An Iterative Bidirectional Gradient Boosting
Algorithm for CVR Baseline Estimation", Available online at: http://arxiv.org/abs/2211.03733

http://arxiv.org/abs/2211.03733


Similar Day Selection Algorithm

H.P. Lee, L. Song, Y. Li, N. Lu, D. Wu, PJ Rehm, M. Makdad, E. Miller, "An Iterative Bidirectional Gradient Boosting
Algorithm for CVR Baseline Estimation", Available online at: http://arxiv.org/abs/2211.03733
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Step 2. 
Use the CVR day
temperature profiles 
to find similar days

Step 3. 
From power 
profiles of 
similar days, 
we can 
estimate the 
CVR baseline.

http://arxiv.org/abs/2211.03733


Bidirectional Estimation

H.P. Lee, L. Song, Y. Li, N. Lu, D. Wu, PJ Rehm, M. Makdad, E. Miller, "An Iterative Bidirectional Gradient Boosting Algorithm for CVR Baseline Estimation",
Available online at: http://arxiv.org/abs/2211.03733

Forecasted values 
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Pre-CVR 
period

Step 1: Run the forward pass Step 2: Run the backward pass
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Time
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➃ ➂ ➁ ➀

Post-CVR 
period

http://arxiv.org/abs/2211.03733


Reconciliation

H.P. Lee, L. Song, Y. Li, N. Lu, D. Wu, PJ Rehm, M. Makdad, E. Miller, "An Iterative Bidirectional Gradient Boosting
Algorithm for CVR Baseline Estimation", Available online at: http://arxiv.org/abs/2211.03733

Forward

Merge the two sets of values

CVR period
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Iterate until the last value is estimated

H.P. Lee, L. Song, Y. Li, N. Lu, D. Wu, PJ Rehm, M. Makdad, E. Miller, "An Iterative Bidirectional Gradient Boosting Algorithm for CVR Baseline Estimation",
Available online at: http://arxiv.org/abs/2211.03733

Iteration 1
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Iteration 2

http://arxiv.org/abs/2211.03733


Non-CVR day 1,⋯ , Nnon−CVR CVR day 1,⋯ , NCVR

Data Preparation
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Reconciliation Weight Selection

• Reconciled the forward and backward pass estimations

• Linear reconciliation ෠𝑃𝑡
𝑅 = 𝑤𝑡

𝑓
× ෠𝑃𝑡

𝑓
+𝑤𝑡

𝑏 × ෠𝑃𝑡
𝑏 (1)

• Linear regression 𝑃𝑗,𝑡
𝐺𝑇 = ෠𝑃𝑗,𝑡

𝑓
×𝑤𝑡

𝑓
+ ෠𝑃𝑗,𝑡

𝑏 ×𝑤𝑡
𝑏 (2)

Reconciliation weights



Datasets

• Collected by a utility on 3 distribution feeders in NC in 2019 and 2020

• Aggregated from meters belonging to the same feeder (15-min rez.)



Simulation Results of Actual CVR Days

• Test on the actual 24 CVR days

• CVR performance varies:

– Time-of-the-day, load composition, and weather variations



Hourly Average CVR Factor

• Observations from Hourly Average CVR factor

– Lower than literature reported CVRf (from 0.3 to 1) due to different load 

compositions

– Initial load drops due to the CVR, and then bounce back

(a) Feeder 1 (b) Feeder 2 (c) Feeder 3



Next Step

• Expanded application to DR baseline estimation
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