

ROCKY MOUNT, NC

Bitcoin mining

March 8, 2023 Khalil Matar - EE

A) City of Rocky Mount is currently working to serve what likely will be our largest commercial customer, a bitcoin mining operation.

Technical aspects of serving this customer:

- 1) Definition of bitcoin mining & POD,
- 2) Pictures of site development & Project Progress,
- 3) Customer equipment specifications,
- 4) Load type,
- 5) POD arrangements and load staging,

Summary of Presentation

6) Feeder design,

7) Transformer needs, and

8) Load Management considerations.

B) Precautions and technical concerns for investors & for utilities when serving crypto currency mining operation:

- 1) Customer equipment and non-standard voltage solutions (e.g., voltage control),
- 2) Harmonic effects on utility equipment and other customers,
- 3) Impact of PF leading on feeder voltage, and
- 4) Environmental concerns,
- 5) Public Concerns/Audible sound level.

Bitcoin mining:

Process to validate Bitcoin transactions on the network & to add the results to the blockchain ledger.

Definition of bitcoin mining & POD

- Validation is done by solving complex cryptographic hash puzzles to verify blocks of transactions that are updated on the decentralized blockchain ledger.
- > In return, miners are awarded a certain number of bitcoins per block.

Bitcoin Mining POD

Bitcoin Mining POD-

- POD = "Proof of delivery" container,
- Powerful computers, Fast & high-capacity RAMs,
- > Air filters on both sides
- Cool air in POD from the sides,
- Hot air out of POD from Hood.

Site before project – October 2022

Original site in October

Site Clearance - October 2022

Site December 2022

Customer's equipment specifications

Customer's equipment specifications:

- 1. Powerful computers.
- 2. Fast & high-capacity RAMs.
- 3. Voltage: 255 Volts AC LG (as requested by customer)
- 4. Power: 3250 watts / unit.
- 5. Not all units have the same capacity & specs.
- 6. Equipment manufactured outside the USA.
- 7. Nowadays one of the greatest <u>nonlinear</u> consumers of electricity is equipment for cryptocurrency mining.

Load type/characteristics:

- 1. 2 MW/POD (depending on number of units & specs in each POD).
- 2. Non-linear load.
- 3. Capacitive load/Leading PF.
- 4. 24/7 operation (no cooling time for utility facilities).
- 5. Max demand varies depending on cooling fans on units.
- 6. Customer committed to remove units in case of overload on transformers.

Load type

POD arrangements & load staging

- **1) Feeders:** City extended 2 existing distribution feeders and made minor modifications to provide the required electric service,
- 2) First stage: 1 feeder for 3 PODs and another feeder for 2 PODs,
- **3)** Transformers: 2500KVA, 277/480V (GND Y/GND Y) for each POD (Transformer tap was set to 105% to lower service voltage in order to meet the customer's voltage requirement) (5% voltage reduction on transformers),
- **4) Derated "non-K rated" Transformers** to 80% of their capacity (to be monitored in summer time in case of overheating),
- **5)** Customer wanted Delta/Y distribution transformer for suppression of harmonics.

Feeder design

- 6) Voltage regulators: Voltage regulator bank was installed near the customer's site.
 - **Settings:** 118.5V, BW=2 volts on 120V base. Regulators settings were changed to 119.5V based on Customer's request, (Avg. voltage on customer's side = 259V LG),
- **7)** Ramp up / down: Customer has the capacity to ramp up / down his load within the same POD to avoid voltage flicker/spike during load management,
- 8) Meters: One secondary meter/Transformer (No primary meter)/Large general service agreement. No KVAR consumption on meter (capacitive load), and
- **9) Customer's future plan:** To add 5 more PODs (this will require an express feeder or most likely a substation).

Voltage at Transformer V LG= 258-260V

Voltage THD Avg. 3.1% / 800KW

٠

....

Primary current

-

POD 1	Primary Amps			
Transformer 1 2500 KVA	A	В	С	Neutral
Load : 242 Machines 800 KW Date: 1/31/2023	35.4	36.0	36.4	9.6 (26.6% of phase)
Load : 380 Machines 1,235 KW Date: 2/9/2023	56.5	56.1	57.5	15.1 (26.6% of phase)

Voltage Harmonics

IEEE 519-2022 Voltage harmonic limits

Bus voltage V at point of common coupling	Individual harmonic (%)	Total harmonic distortion THD (%)
V ≤ 1.0 kV	5.0	8.0
(at secondary/800KW)	(measured=)	(Avg. measured=3.1)*
(at secondary/1,333KW)	(measured=)	(Avg. measured=4.4)
At POD 1 Transformer		

(*) POD 2 Transformer: Average measured THD of 2.4% on secondary side at no load.

Current Harmonics

IEEE 519-2022 Current distortion limits (system rated 277V-LG)

ISC/IL at PCC	Harmonic limits 2 ≤ h < 11	TDD		
<20	4.0	5.0%		
1,333KW	(Avg. Measured=)	(Avg. Measured= 1.0%)		
Avg. measured THD current %: 11.27 %				

3rd harmonic measured current: 180 A 5th harmonic measured current: 56 A 7th harmonic measured current: 20 A

Load Management considerations

Load Management considerations:

- 1) Customer agreed to apply load management when the City request that,
- 2) City send a signal to customer to apply load management,
- 3) Customer has the capability to apply load management locally/remotely, and
- 4) Customer ramps up/down the loads within same POD & one POD at a time.

4

Precautions & technical concerns

Precautions & technical concerns:

- Customer's equipment and non-standard voltage solutions (e.g., voltage control),
- 2) Harmonic effects on electric utility equipment and other customers,
- 3) Impact of leading PF on feeder voltage, and
 - Environmental/Public concerns.

1) <u>Customer's equipment and non-standard voltage solutions (e.g.,</u> <u>voltage control)</u>:

- a) Use voltage regulators & Transformer taps to regulate the voltage.
- b) US manufacturers entered the crypto mining chip business,
- c) US chips are 1000 times faster, more energy efficient than those manufactured outside USA, and
- d) US made chips/processors meet US standards,

2) Harmonic effects on utility equipment and other customers:

- a) Current harmonics come from the load, causing increased eddy current and hysteresis losses in transformers resulting in losses and over-heating, and overloading the neutral conductor,
- b) Current distortion causes overheating in facilities and shortens lifetime of equipment (such as transformers),
- c) Current distortion causes voltage distortion,
- d) Voltage distortion causes mis-operation/disruption of equipment, and
- e) Problem of harmonic distortion depends on magnitude of distortion.

IEEE 519-2022 Voltage distortion limits

	Bus voltage V at point of common coupling	Individual harmonic (%)	Total harmonic distortion THD (%)		
	V ≤ 1.0 kV	5.0	8.0		
	1 kV < V ≤ 69 kV	3.0	5.0		
•••	69 kV < V ≤ 161 kV	1.5	2.5		
attra 0	161 kV < V	1.0	1.5		

IEEE 519-2022 Current distortion limits (up to 69KV)

	ISC/IL at PCC	limits	Harmonic limits 11 ≤ h < 17	Harmonic limits 17 ≤ h < 23	Harmonic limits 23 ≤ h < 35	Harmonic limits 35 ≤ h ≤ 50	TDD
	<20	4.0	2.0	1.5	0.6	0.3	5.0
	20<50	7.0	3.5	2.5	1.0	0.5	8.0
	50<100	10.0	4.5	4.0	1.5	0.7	12.0
	100<1000	12.0	5.5	5.0	2.0	1.0	15.0
•	>1000	15.0	7.0	6.0	2.5	1.4	20.0

3) Impact of leading PF on feeder voltage:

- a) No impact
- b) PF = 99 % leading

4) Environmental/Public concerns:

- a) Tree removals: clearing the site for construction,
- **b)** Heat from POD: processors create a lot of heat sometimes temperature inside PODs reaches very high degrees, and
- c) Public disturbance/Audible noise from fans.

<u>4C) Environmental/public concerns:</u>

Audible noise levels:

- **1)** At entrance of site: 41 Db at 5:30AM before bitcoin mining operation started.
- 2) With 242 machines operating at POD 1:
 - a) 44.4 Db at entrance of site
 - b) 70.4 Db at left front side of POD 1
 - c) 68.8 Db at right front side of POD 1
 - d) 60.4 Db at back side of POD 1

44.4 Db at entrance of site (242 Machines)

left & right front side of POD 1 (242 Machines)

Recommendations

1) <u>Investors:</u>

- a) Buy American made processors to meet US standards/efficiency,
- b) Select a <u>large site</u> that is far enough from residential, commercial or industrial areas to avoid public disturbance. Even if zone allows,
- c) Change method of cooling to reduce audible noise, and
- d) Use Isolation/soundproof walls to reduce audible noise.

2) Utilities:

- a) Use dedicated feeders or <u>dedicated substations</u> for large operations to avoid harmonic distortion and service quality problems, and
- b) Transformers:
 - * Use Delta/Wye transformers for suppression of harmonics,
 - * De-rate "non K-Factor Transformer": de-rated power transformers to 70%,
 - * Use "K-Factor transformer": Standard IEEE C.57.110 2018, and
 - * K-Factor transformers include: neutral design up to 200% neutral connections, design windings/core/insulation to lower all current losses, (test it thru independent certified agency).

3) Rules/Regulations:

a) Issue standards/rules/regulations on crypto mining operations especially their impact on customers/residents.

C) Questions/Answers?

1 | Presentation Name | Presenter Name | Date

Connections Summit Breakout Session #3 Feedback

